
CSCI 2320
Web Programming:

Ruby on Rails

Mohammad T. Irfan

Plan

•Model-View-Controller (MVC) framework of web
programming
•Ruby on Rails

Ruby on Rails

•Developed by David Hansson – released 2004
•MVC architecture
•MVC by Trygve Reenskaug, 1979
• GUI for Smalltalk

• Learning Resources
• Quick guide

http://guides.rubyonrails.org/getting_started.html
• Best online book

https://www.railstutorial.org/book

http://guides.rubyonrails.org/getting_started.html
https://www.railstutorial.org/book

Interview of David H. Hansson

“Ruby Is Closer to Human Thought Than to Code”
https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-
code/

https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-code/
https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-code/

Ruby on Rails – MVC framework

Goal: Decouple the three parts of an application–
Model, View, Controller

Model
• Database (DB)
• Constraints on data
• Object Relational Mapping (ORM)

• Maps DB tables to classes, rows to objects
• Called ActiveRecord

View
• Prepares and presents results for users
• Templates

• XHTML
• XML
• Javascript

Controller
• Takes user input
• Consults with model
• Directs the view

The basic code is auto-generated

Getting started

• Terminal command from the parent folder
• rails new projectName
• Windows users: open Gemlock.lock file, change “sqlite 3 (1.3.8-

...)” to “sqlite 3 (1.3.8)”

• Error related to Gemfile?
• cd to project folder
• Execute command: bundle install

• Start the server
• Open the newly created project folder in VS Code
• Execute terminal command: rails server (or, rails s)
• No need to restart the server when you edit code

• Open a browser and go to http://localhost:3000/

http://localhost:3000/

Browse the project folders

App
•models
• views
• controllers

Creating a new website

1. Create its own controller
2. Add pages to it later on

Website with dedicated controller

Initial setup: Create a project (rails new ProjectName) and
open the new project folder in VS Code

• Command
• rails generate controller MyHomePage home contact --no-test-

framework

• Controller class
• Views

Test the pages

•http://localhost:3000/my_home_page/home
•http://localhost:3000/my_home_page/contact
•http://localhost:3000/my_home_page
• Error
• Look into config/routes.rb
get 'my_home_page/home'
get 'my_home_page/contact'

http://localhost:3000/my_home_page/home

• Router routes to MyHomePageController controller
• The home method of the Controller class is executed first
• Empty for now

• Then the corresponding view is executed
• home.html.erb
• You may edit it as you like

How it works:

http://localhost:3000/my_home_page/home
http://home.html.erb/

Add a page without adding new controller

• First, modify config/routes.rb by adding
get "my_home_page/projects"

•Modify the controller class in
my_home_page_controller.rb

 def projects
 end

• Create view
• Add a new projects.html.erb file in views/my_home_page folder

• Any content:
<h1>Here are my Ruby projects</h1>
<%=image_tag("ruby_logo.png", size:"200")%>

Drag & drop it in app/assets/images

More here:
http://guides.rubyonrails.org/layouts_

and_rendering.html

Rails architecture

•Representational State Transfer (REST)
• Roy Fielding (2000) – “architectural style”

•Clients communicate with web service
• Limited number of verbs
• Resources (nouns) – identified by URI

•Rails
• Nouns: objects in ORM
• Verbs: create, read, update, delete (CRUD)

•HTTP
• Nouns: URL
• Verbs: GET, POST, PATCH, DELETE

REST is stateless (or memoryless)!

•Every new request creates a new controller object
•All prior controller objects wiped out
•No data transfer from one request to next
•Way around: database, cookies

Building an auction
app from scratch

Plan

•Rails web application
• A more involved example
•Without “scaffolding”
• Understand flow of control

•Problem: web service with database connectivity
– auction
• Input: name and bid amount
• Store bid information in database
• Output: show all bids in sorted order

Google this picture
Download it
(Copy to
app/assets/images)

Start of workflow

1. Open a terminal and cd to your Rails folder
2. Create an application
• rails new AuctionApp

3. Open the AuctionApp folder on VS Code
4. Create a controller – the only controller
• rails generate controller AuctionApp index

5. Start the server (below, s stands for server)
• rails s

Routing – config/routes.rb

•Make the index page the root (http://localhost:3000)
• root "auction_app#index"

• Other routing information (previously these were done
automatically when you said resources :students)
• get "/auction_app" => “auction_app#index”
• get "/" => “auction_app#index”
• post "/" => “auction_app#enterBid”

Model – without scaffolding

•Open a new terminal in VS Code
•Create a model: ORM
• rails generate model Bid bidder:string amount:float

•Create actual database table
• bundle exec rake db:migrate #creates DB table bids

•We don’t want a separate controller for this (want
to use auction_app_controller)
• Don’t say resources :bids in routes.rb
• If you say so, it will automatically (without writing it

explicitly in routes.rb) map HTTP get, post, etc. to index,
create, etc. methods of the bids_controller.rb which we
don’t have!

Controller

•Action for the “Enter Bid” button
• auction_app/enterBid: enterBid method in

auction_app_controller

•Next: write this method
• This is the method that will be called when the “submit”

button is pressed
• You are allowed to pick any name for the method
• The name must match with the router though!

Controller

Method name

Argument:
responder obj.

Body

More: http://bit.ly/1p1L8AR

http://bit.ly/1p1L8AR

Other DB functions

•newRow.save
•newRow.update
•newRow.destroy
•Bid.find(map)

Create the view:
HTML way or ERB way

View

Your image name could be different!

Add to change size:
, width: "300"

View (continued)

To see the actual database files:
1. cd to the storage folder
2. command:

sqlite3 development.sqlite3
> .tables
> select * from bids;

Flow of control

• localhost:3000
è routes.rb routes it to auction_app_controller’s index
method
è shows output of index.html.erb

• Enter data in form and press “Enter Bid” button è
routes.rb routes it auction_app_controller’s enterBid
method (why not the index method?)
è Redirects to homepage

Multiple Forms
with
One Controller
One Post Handler

Auction App

Create a new button to find the leader

1. View: add embedded Ruby (erb) code for new
form [alternative: HTML]

2. routes.rb: Enter the name of a new method to
handle all posts

3. Controller: Implement the new post-handler
method
• Also implement a method for finding the leader

View (index.html.erb)

routes.rb

Next: add methods to the
controller class

Click

Message from the Rails Server:
note how post is handled

Other data operations

Active records

• Create new object or equivalently new row in a table
• Update existing object/row
• Delete existing object/row
• Tutorial:
• https://guides.rubyonrails.org/active_record_basics.html

https://guides.rubyonrails.org/active_record_basics.html

Scaffolding (optional)
Quick way of creating a database project

Scaffolding

• Fast process of generating start-up codes
• First, design a schema

• Command for ORM
• rails generate scaffold Student bID:string name:string email:string

• Other useful commands: rails destroy scaffold ... (delete a
previous ORM)

bID name email

B01224 Bob bob@bowdoin.edu

...

...

students

Migrate model to DB

• Command for migration
• bundle exec rake db:migrate
• Reverse is: rake db:rollback (don’t run it now)

• “rake”
• Ruby’s make: configure, make, make install

• “bundle exec”: executes the rake script (db:migrate) in the context
of the project’s Gemfile

View the webpage

•Command: rails s
• s is shortcut for server

•Go to http://localhost:3000 on web browser
• No surprise there

http://localhost:3000/

Automatically created form

Navigate to http://localhost:3000/students

http://localhost:3000/students

Where’s the database?

•Location information: config/database.yml
•Usually in the storage folder
•To work on the database from the terminal:
•cd to the storage folder
•Command: sqlite3 development.sqlite3

What’s going on?

1. Browser: http://localhost:3000/students
2. <Ruby Router> routes to students_controller.rb
3. students_controller.rb gets data from database table

students (using ORM)
4. students_controller.rb feeds data to

View<index.html.erb> within the students view (erb =
embedded Ruby)

5. index.html.erb produces a nice html file and gives it to
students_controller.rb

6. students_controller.rb sends that html file to browser.

http://localhost:3000/students

Rails router

• config/routes.rb
• resources :students

•Routes to app/controllers/students_controller.rb

• class StudentsController < ApplicationController

 # GET /students/new

 def new
 @student = Student.new
 end Student class is in

models/
student.rb

Controller

• class StudentsController < ApplicationController

 # GET /students/new

 def new
 @student = Student.new
 end Student class is in

models/
student.rb

