CSCl 2320
Web Programming:
Ruby on Rails

F

Mohammad T. Irfan

Plan

* Model-View-Controller (MVC) framework of web
programming

* Ruby on Rails

Ruby on Rails

* Developed by David Hansson — released 2004

e MVC architecture

* MVC by Trygve Reenskaug, 1979
e GUI for Smalltalk

* Learning Resources
* Quick guide
http://guides.rubyonrails.org/getting started.html

e Best online book
https://www.railstutorial.org/book

http://guides.rubyonrails.org/getting_started.html
https://www.railstutorial.org/book

Interview of David H. Hansson

“Ruby Is Closer to Human Thought Than to Code”

https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-
code/

https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-code/
https://bigthink.com/videos/ruby-is-closer-to-human-thought-than-to-code/

Ruby on Rails — MVC framework

Goal: Decouple the three parts of an application—

Model, View, Controller

Model
e Database (DB)
 Constraints on data
* Object Relational Mapping (ORM)

* Maps DB tables to classes, rows to objects
 Called ActiveRecord

View
* Prepares and presents results for users

* Templates
* XHTML
* XML
* Javascript

Controller

* Takes user input
e Consults with model
* Directs the view

The basic code is auto-generated

Getting started

* Terminal command from the parent folder
* rails new projectName
* Windows users: open Gemlock.lock file, change “sqlite 3 (1.3.8-
...)” to “sqlite 3 (1.3.8)”
* Error related to Gemfile?
 cd to project folder
* Execute command: bundle install

e Start the server

* Open the newly created project folder in VS Code
* Execute terminal command: rails server (or, rails s)
* No need to restart the server when you edit code

* Open a browser and go to http://localhost:3000/

http://localhost:3000/

Browse the project folders

App

* models
* views
» controllers

Creating a new website

1. Create its own controller
2. Add pagesto it later on

Website with dedicated controller

Initial setup: Create a project (rails new ProjectName) and

open the new project folder in VS Code

e Command

* rails generate controller MyHomePage home contact --no-test-
framework

* Controller class

* \iews

Test the pages

* http://localhost:3000/my_home_page/home
* http://localhost:3000/my_home page/contact

* http://localhost:3000/my _home_page
* Error

* Look into config/routes.rb
get 'my_home_page/home'
get 'my_home_page/contact’

How it works:
http://localhost:3000/my home page/home

* Router routes to MyHomePageController controller

e The home method of the Controller class is executed first
* Empty for now

* Then the corresponding view is executed
* home.html.erb

* You may edit it as you like

E@~v~ 1= |class MyHomePageController < ApplicationController

B = controllers A 2 def home

= concerns 3 end

@] application_controller.rb

my_home_page_controller.rb 4

@] students_controller.rb 59 def contact
& helpers (9 end
B (= mailers 7 end
B = models 8

(= concerns

@] student.rb

http://localhost:3000/my_home_page/home
http://home.html.erb/

Add a page without adding new controller

* First, modify config/routes.rb by adding

get "'my_home_page/projects"”

* Modify the controller class in
my_home_page controller.rb
def projects

end Drag & drop it in app/assets/images
* Create view
* Add a new projects.html.erb file iYviews/my_home_page folder

* Any content:
<h1>Here are my Ruby projécts</h1>
<%=image_tag("ruby_logo.png", size:"200")%>

Rails architecture

* Representational State Transfer (REST)
* Roy Fielding (2000) — “architectural style”

* Clients communicate with web service

* Limited number of verbs
* Resources (nouns) — identified by URI

* Rails
* Nouns: objects in ORM
 Verbs: create, read, update, delete (CRUD)

*HTTP

* Nouns: URL
* Verbs: GET, POST, PATCH, DELETE

REST is stateless (or memoryless)!

* Every new request creates a new controller object

* All prior controller objects wiped out

* No data transfer from one request to next
* Way around: database, cookies

o

Building an auction
app from scratch

Plan

* Rails web application

* A more involved example
e Without “scaffolding”
* Understand flow of control

* Problem: web service with database connectivity
— auction
* Input: name and bid amount
* Store bid information in database
* Qutput: show all bids in sorted order

Welcome to the auction!

Google this picture
Download it

(Copy to
app/assets/images)

Your Name: |
Your Bid: $ j
| Enter Bid |
Bidder Bid
David Kerrigan 250.0

Alice Lin 200.0
Rob Johnson 100.0
David Parkes 50.0
Bob Mitchell 25.0
Just Kidding 0.5

Start of workflow

1. Open a terminal and cd to your Rails folder

2. Create an application
* rails new AuctionApp

3. Open the AuctionApp folder on VS Code

4. Create a controller —the only controller
* rails generate controller AuctionApp index

5. Start the server (below, s stands for server)
* rails s

Routing — config/routes.rb

* Make the index page the root (http://localhost:3000)

* root "auction_app#index"

e Other routing information (previously these were done
automatically when you said resources :students)
» get "/auction_app" => “auction_app#index”
e get "/" => “auction_app#index”
* post "/" => “auction_app#enterBid”

= Rails.application.routes.draw do
root "auction_app#index"
get "auction_app" => "auction_app#index"
get "/" => "auction_app#index"
post "/" => "auction_app#enterBid"
end

SV HEs WN =

Model — without scaffolding

* Open a new terminal in VS Code

* Create a model: ORM
* rails generate model Bid bidder:string amount:float

* Create actual database table
* bundle exec rake db:migrate #creates DB table bids

* We don’t want a separate controller for this (want
to use auction_app_controller)
* Don’t say resources :bids in routes.rb
* If you say so, it will automatically (without writing it

don’t have!

Controller

e Action for the “Enter Bid” button

* auction_app/enterBid: enterBid method in
auction_app_controller

 Next: write this method

* This is the method that will be called when the “submit”
button is pressed

* You are allowed to pick any name for the method

* The name must match with the router though!

1= class AuctionAppController < ApplicationController
‘ protect_from_forgery with: :null_session [Controller }
3= def index
4 puts "------—-—---—--- In Index ------------—---- "
5 @allBids = Bid.all
6 puts "# of bids = #{@allBids.size}"
7 @allBids = @allBids.sort_by {lbid| [-bid.amount,bid.bidder]}
8 end
9
10~ def enterBid
11 puts "------—---—---- In Enter Bid --------—------ "
12 bidder = params[:bidderInput]
13 amount = params[:amountInput].to_f
14 map = {"bidder" => bidder, "amount" => amount}
15 newRow = Bid.new(map)

Method name

162 respond_to<do format| . y
17 1f newRow.save Argument:

18 puts "Success!” __responder obj.
19 format.html{redirect_to auction_app_url} _ | Body

20 else <

21 format.html{redirect_to "/"} #Can create an error page

22 end

23 end _

4 end [More: http://bit.ly/1p1L8AR]

25 end

http://bit.ly/1p1L8AR

Other DB functions

‘new

‘new

‘new

Row.save

Row.update

Row.destroy

* Bid.find(map)

View
Add to change size:
, width: "300"

1

<h1>Welcome to the auction!</ﬁ;i//////////
<p> <%= 1mage_tag "starry.jpg"%> </p> _

- <!-- equivalent html code

<form name="bidInput" action="/" method="post">
<div>
<p>Your Name: <input type="text" name="bidderInput"></p>
<p>Your Bid: <input type="text" name="amountInput"></p>
<p><input type="submit" value="enter_bid"></p>
</div>
</form>
-->
<%= form_tag do%>
<p>Your Name: <%= text_field_tag(:bidderInput) %> </p>
<p>Your Bid: $ <%= text_field_tag(:amountInput)¥%> </p>
<p> <%= submit_tag "Enter Bid"%> </p>
<% end %>

View (continued)

18= <table >

19¢= <thead>

20¢ <tr>

21 <th> Bidder </th>

22 <th> Bid </th>

23 </tr>

24 </thead>

25

26¢ <tbody>

27 <% @allBids.each do |bid| %>

28¢ <tr>

29 <td> <%= bid.bidder %> </td>
30 <td> <%= bid.amount %> </td>
31 </tr>

32 <% end %>

33 </tbody>

34 </table>

Welcome to the auction!

Your Name: |
Your Bid: $/
| Enter Bid |
Bidder Bid
David Kerrigan 250.0

Alice Lin 200.0
Rob Johnson 100.0
David Parkes 50.0
Bob Mitchell 25.0
Just Kidding 0.5

g S /To see the actual database files: \

1. cdto the storage folder
2. command:
sqglite3 development.sqglite3
> .tables
K > select * from bids; /

11IRob Johnson|100.012014-11-20 03:05:43.52¢
121Alice Linl200.012014-11-20 03:06:33.1680:
13IDavid Kerriganl|250.012014-11-20 03:07:14.
14 |David Parkes|50.012014-11-20 03:07:54.221
151Bob Mitchelll25.012014-11-20 03:08:12.811
161Just Kiddingl0.512014-11-20 03:08:44.728:

Flow of control

* localhost:3000
=>» routes.rb routes it to auction_app_controller’s index
method
=>» shows output of index.html.erb

* Enter data in form and press “Enter Bid” button =»
routes.rb routes it auction_app_controller’s enterBid
method (why not the index method?)
=>» Redirects to homepage

Multiple Forms
with

One Controller
One Post Handler

Auction App

Create a new button to find the leader

1. View: add embedded Ruby (erb) code for new
form [alternative: HTML]

2. routes.rb: Enter the name of a new method to
handle all posts

3. Controller: Implement the new post-handler
method

 Also implement a method for finding the leader

View (index.html.erb)

352 <!-- Another form on the same page:

36 Find the leader's name -->

37 <%= form_tag do%>

38= <p> Who's leading the acution now?
39 <%= submit_tag "Get Leader"%>
40 </p>

41 <% end %>

42

routes.rb

1= Rails.application.routes.draw do

2 root "auction_app#index"

3 get "/auction_app"=>"auction_app#index"
4 get "/"=>"auction_app#index"
5
6

#post "/"=>"auction_app#enterBid"
post "/"=>"auction_app#handlePost"

Next: add methods to the
controller class

265
27
28
29
30
31
32
33e
34
35
36
37
38
39
40
41
42
43
44
45

def getlLeader

puts "------------—-- In Get Leader ----------—------
#Need to sort again, because every request creates

#a new instance of Controller class (why?)h
@allBids = Bid.all

@allBids = @allBids.sort_by {lbid| [-bid.amount,bid.bidder]}
puts "Leader: #{@allBids[@].bidder}"

respond_to do |[formatl

format.html {redirect_to auction_app_url}
end

end

def handlePost

1f params[:commit] == "Enter Bid"
enterBid

elsif params[:commit] == "Get Leader"
getlLeader

end

end

46 end #end of class AuctionAppControlled

LV |

Welcome to the auction!

Your Name:
Your Bid: $

Enter Bid

Bidder Bid
Bob 200.0
Alice 100.0
David 50.0
Clint 250

Who's leading the acution now? Get Leader

Started POST "/" for ::1 at 2017-11-28 01:47:26 -0500
Processing by AuctionAppController#handlePost as HTML

Parameters: {"utf8"=>"/", "authenticity token"=>"PObsUszMqu@/28waISw+l
Ny3NfkMGmV4JVy/yquLVQGgoP]oKavaorKSOw ', "commit"=>"Get Leader"}

- In Get Leader ——-—

Bid Load (©.2ms) SELECT "bids".* FROM "b1ds"
Leader: Bob
Redirected to http://localhost:3000/auction_app
Completed 302 Found in 6ms (ActiveRecord: 0.4ms)

Other data operations

Active records

* Create new object or equivalently new row in a table
» Update existing object/row
* Delete existing object/row

e Tutorial:

* https://guides.rubyonrails.org/active record basics.html

https://guides.rubyonrails.org/active_record_basics.html

Scaffolding (optional)

Quick way of creating a database project

Scaffolding

* Fast process of generating start-up codes

* First, design a schema

B01224 Bob bob@bowdoin.edu

e Command for ORM

* rails generate scaffold Student bID:string name:string email:string

* Other useful commands: rails destroy scaffold ... (delete a
previous ORM)

Migrate model to DB

 Command for migration
* bundle exec rake db:migrate
* Reverse is: rake db:rollback (don’t run it now)

* “rake”

* Ruby’s make: configure, make, make install

* “bundle exec”: executes the rake script (db:migrate) in the context
of the project’s Gemfile

View the webpage

e Command: rails s

* s is shortcut for server

* Go to http://localhost:3000 on web browser
* No surprise there

http://localhost:3000/

Automatically created form

Navigate to http://localhost:3000/students

& - C A [localhost:3000/students

Listing students

Bid Name Email

€« >C #© {D localhost:3000/students/new

New Student * Apps K Suggested Sites ‘1 Web Slice Gallery [AARP [

New student
Bid

| |

| |

Email

| |

' Create Student |

Back

http://localhost:3000/students

Where’s the database?

*Location information: config/database.yml
*Usually in the storage folder

*To work on the database from the terminal:
*cd to the storage folder
* Command: sqlite3 development.sqglite3

What’s going on?

1. Browser: http://localhost:3000/students

2. <Ruby Router> routes to students_controller.rb

3. students_controller.rb gets data from database table
students (using ORM)

4. students controller.rb feeds data to

View<index.html.erb> within the students view (erb =
embedded Ruby)

5. index.html.erb produces a nice html file and gives it to
students_controller.rb

6. students controller.rb sends that html file to browser.

http://localhost:3000/students

Rails router

* config/routes.rb
* resources :students

* Routes to app/controllers/students controller.rb

* class StudentsController < ApplicationController

GET /students/new

def new

@student = Student.new

end Student class is in
models/

student.rb

Controller

* class StudentsController < ApplicationController

GET /students/new
def new

@student = Student.new

end Student class is in

models/
student.rb

